AI News Analyzer
Here’s a complete example of an AI agent that analyzes news articles using CodecFlow’s cloud desktops:
import { CodecFlow } from '@codecflow/sdk';
async function startNewsAnalyzer() { // Initialize CodecFlow const codecflow = new CodecFlow({ apiKey: 'your-api-key' });
// Create cloud desktop const desktop = await codecflow.createDesktop({ os: 'linux', version: 'ubuntu-22.04', security: { teeEnabled: true, isolationLevel: 'medium' } });
// Create browser session const browser = await desktop.createBrowser();
// Connect AI agent using MCP const agent = await desktop.connectAgent({ model: 'gpt-4', protocol: 'mcp', config: { capabilities: ['browser', 'filesystem', 'network'], contextProviders: [ { type: 'news-sources', sources: ['reuters', 'ap', 'bloomberg'], categories: ['technology', 'finance', 'politics'] } ], prompt: `You are a news analyst. Read articles, extract key information, and provide insightful analysis on technology trends.` } });
// Set up news analysis workflow await agent.executeAction({ type: 'workflow', action: 'configure', params: { schedule: 'hourly', outputFormat: 'markdown', storageLocation: '/reports', alertThreshold: 'high' } });
// Start the desktop await desktop.start();
// Monitor analysis results desktop.on('analysisComplete', (result) => { console.log(`Analysis complete: ${result.title}`); console.log(`Key insights: ${result.insights.join(', ')}`); console.log(`Sentiment: ${result.sentiment}`); });
// Handle errors desktop.on('error', (error) => { console.error('Analysis error:', error); });
// Graceful shutdown process.on('SIGINT', async () => { await desktop.shutdown(); process.exit(0); });}
startNewsAnalyzer().catch(console.error);
from codecflow import CodecFlow
async def start_news_analyzer(): # Initialize CodecFlow codecflow = CodecFlow(api_key='your-api-key')
# Create cloud desktop desktop = await codecflow.create_desktop( os='linux', version='ubuntu-22.04', security={ 'tee_enabled': True, 'isolation_level': 'medium' } )
# Create browser session browser = await desktop.create_browser()
# Connect AI agent using MCP agent = await desktop.connect_agent( model='gpt-4', protocol='mcp', config={ 'capabilities': ['browser', 'filesystem', 'network'], 'context_providers': [ { 'type': 'news-sources', 'sources': ['reuters', 'ap', 'bloomberg'], 'categories': ['technology', 'finance', 'politics'] } ], 'prompt': 'You are a news analyst. Read articles, extract key information, and provide insightful analysis on technology trends.' } )
# Set up news analysis workflow await agent.execute_action({ 'type': 'workflow', 'action': 'configure', 'params': { 'schedule': 'hourly', 'output_format': 'markdown', 'storage_location': '/reports', 'alert_threshold': 'high' } })
# Start the desktop await desktop.start()
# Monitor analysis results def on_analysis_complete(result): print(f"Analysis complete: {result['title']}") print(f"Key insights: {', '.join(result['insights'])}") print(f"Sentiment: {result['sentiment']}")
desktop.on('analysisComplete', on_analysis_complete)
# Handle errors def on_error(error): print(f"Analysis error: {error}")
desktop.on('error', on_error)
# Graceful shutdown def handle_shutdown(sig, frame): await desktop.shutdown() exit(0)
import signal signal.signal(signal.SIGINT, handle_shutdown)
# Run the news analyzerawait start_news_analyzer()
Key Features
Section titled “Key Features”- Secure News Analysis: Uses TEE to protect sensitive data and operations
- AI-Powered Analysis: Leverages MCP to connect AI models with news sources
- Automated Workflows: Configures scheduled analysis of news content
- Multi-Source Integration: Analyzes content from multiple news providers
- Sentiment Analysis: Extracts key insights and sentiment from articles
- Secure Storage: Stores analysis results in a protected environment
Note: This example demonstrates how CodecFlow’s cloud desktops can be used for automated content analysis with AI integration.