Cloud Desktop with Streaming
This example demonstrates how to create a cloud desktop with streaming capabilities using CodecFlow. The desktop uses MCP (Model Context Protocol) for AI integration and TEE (Trusted Execution Environment) for secure operations.
import { CodecFlow } from '@codecflow/sdk';
async function createStreamingDesktop() { // Initialize CodecFlow with secure API key const codecflow = new CodecFlow({ apiKey: process.env.CODECFLOW_API_KEY });
// Create a secure desktop with TEE const desktop = await codecflow.createDesktop({ os: 'windows', version: '11', security: { teeEnabled: true, encryptedStorage: true, isolationLevel: 'high' }, resources: { memory: '16gb', cpu: 8, gpu: true // Enable GPU for streaming } });
// Create browser for web access const browser = await desktop.createBrowser(); await browser.navigate('https://example.com');
// Connect AI agent with MCP const agent = await desktop.connectAgent({ model: 'gpt-4', protocol: 'mcp', config: { capabilities: ['browser', 'network', 'system', 'streaming'], contextProviders: [ { type: 'content-analysis', sources: ['web-page', 'system-events'] } ] } });
// Configure Twitch streaming const stream = await desktop.createStream({ platform: 'twitch', credentials: { streamKey: process.env.TWITCH_STREAM_KEY, channelName: process.env.TWITCH_CHANNEL }, settings: { resolution: '1080p', fps: 30, bitrate: '6000k', title: 'AI Desktop Stream', category: 'Just Chatting' } });
// Create stream overlay const overlay = await stream.createOverlay({ template: 'standard', elements: { header: { title: 'AI Desktop Demo', subtitle: 'Powered by CodecFlow' }, footer: { text: 'Built with CodecFlow Cloud Desktops' } } });
// Start desktop and streaming await desktop.start(); await stream.start();
// Update overlay with real-time data desktop.on('systemUpdate', (data) => { overlay.update('systemInfo', { data: data.metrics }); });
// Handle Twitch chat with AI responses stream.on('chat', async (message) => { const response = await agent.executeAction({ type: 'communication', action: 'generateChatResponse', params: { message: message.content, user: message.username } });
await stream.sendChatMessage(response); });
// Secure shutdown when done process.on('SIGINT', async () => { // End stream with goodbye message await stream.sendChatMessage('Stream ending. Thanks for watching!'); await stream.stop();
// Shutdown desktop await desktop.shutdown(); process.exit(0); });}
createStreamingDesktop().catch(console.error);
import osimport signalfrom codecflow import CodecFlow
async def create_streaming_desktop(): # Initialize CodecFlow with secure API key codecflow = CodecFlow( api_key=os.environ.get('CODECFLOW_API_KEY') )
# Create a secure desktop with TEE desktop = await codecflow.create_desktop( os='windows', version='11', security={ 'tee_enabled': True, 'encrypted_storage': True, 'isolation_level': 'high' }, resources={ 'memory': '16gb', 'cpu': 8, 'gpu': True # Enable GPU for streaming } )
# Create browser for web access browser = await desktop.create_browser() await browser.navigate('https://example.com')
# Connect AI agent with MCP agent = await desktop.connect_agent( model='gpt-4', protocol='mcp', config={ 'capabilities': ['browser', 'network', 'system', 'streaming'], 'context_providers': [ { 'type': 'content-analysis', 'sources': ['web-page', 'system-events'] } ] } )
# Configure Twitch streaming stream = await desktop.create_stream( platform='twitch', credentials={ 'stream_key': os.environ.get('TWITCH_STREAM_KEY'), 'channel_name': os.environ.get('TWITCH_CHANNEL') }, settings={ 'resolution': '1080p', 'fps': 30, 'bitrate': '6000k', 'title': 'AI Desktop Stream', 'category': 'Just Chatting' } )
# Create stream overlay overlay = await stream.create_overlay( template='standard', elements={ 'header': { 'title': 'AI Desktop Demo', 'subtitle': 'Powered by CodecFlow' }, 'footer': { 'text': 'Built with CodecFlow Cloud Desktops' } } )
# Start desktop and streaming await desktop.start() await stream.start()
# Update overlay with real-time data def on_system_update(data): overlay.update('system_info', { 'data': data['metrics'] })
desktop.on('systemUpdate', on_system_update)
# Handle Twitch chat with AI responses async def on_chat(message): response = await agent.execute_action({ 'type': 'communication', 'action': 'generate_chat_response', 'params': { 'message': message['content'], 'user': message['username'] } })
await stream.send_chat_message(response)
stream.on('chat', on_chat)
# Secure shutdown when done def handle_shutdown(sig, frame): # End stream with goodbye message await stream.send_chat_message('Stream ending. Thanks for watching!') await stream.stop()
# Shutdown desktop await desktop.shutdown() exit(0)
signal.signal(signal.SIGINT, handle_shutdown)
# Run the streaming desktopawait create_streaming_desktop()
Key Features
Section titled “Key Features”- Cloud Desktop Provisioning: Instantly spin up a Windows 11 desktop with GPU support
- Secure Environment: Uses TEE to protect sensitive operations and data
- AI Integration: Leverages MCP to connect AI models with the desktop environment
- Live Streaming: Configures and manages streaming to Twitch with professional overlays
- Interactive: Responds to viewer chat messages using the AI agent
- Resource Optimization: Automatically provisions appropriate resources for streaming
Note: This example requires appropriate API keys and credentials for Twitch streaming.